/
(8.D.2.7) Integral

(8.D.2.7) Integral

Overview

Discrete-time running-sum integral

Discussion

Approximates the integral of a discrete-time signal using the rectangle method. The integral is defined as:

$y[n] = T/K * \sum_{k=0}^n x[k]$ where T is the sample period and K is an optional gain parameter.

The discrete integral is similar to the continuous time integral. For example, if the input is a sine wave at 1 kHz, then the output will be a cosine at 1 kHz scaled by -1/(2*pi*1000).

The hidden internal array .cumSum stores the previous value of the running sum of x[n] between blocks. The length of the array is set by the prebuild function to the number of channels.

Type Definition

typedef struct _ModuleIntegral { ModuleInstanceDescriptor instance; // Common Audio Weaver module instance structure FLOAT32 gain; // Additional gain. FLOAT32* cumSum; // Running sum of input samples since last reset. } ModuleIntegralClass;

Variables

Properties

Name

Type

Usage

isHidden

Default value

Range

Units

gain

float

parameter

0

1

-10:10

linear

cumSum

float*

state

1

[1 x 1]

Unrestricted

 

Pins

Input Pins

Name: in

Description: Input signal

Data type: float

Channel range: Unrestricted

Block size range: Unrestricted

Sample rate range: Unrestricted

Complex support: Real

Output Pins

Name: out

Description: Output signal

Data type: float

MATLAB Usage

File Name: integral_module.m

This module computes the running-sum approximation of the integral of the input signal. Mathematically, this is: y[n] = dt/K * sum(x[0] .. x[n]) where dt is the time step, dt = 1/SR and K is a gain. The module has a multichannel input and computes the integral per channel. Arguments: NAME - name of the module.

 

Related content

(8.D.2.6) Integral
(8.D.2.6) Integral
More like this
(8.D.2.4) Integral
(8.D.2.4) Integral
More like this
(8.D.2.3) Integral
(8.D.2.3) Integral
More like this
(8.D.2.2) Integral
(8.D.2.2) Integral
More like this
(8.D.2.2 ) Integral
(8.D.2.2 ) Integral
More like this
(8.D.2.5) Integral
(8.D.2.5) Integral
More like this