Document toolboxDocument toolbox

(8.D.1.2) SbDerivative

Overview

Subband derivative

Discussion

Computes the derivative of frequency domain data individually within each subband. The derivative is defined as:

$y[n] = K/T * (x[n] - x[n-1])$ where T is the sample period and K is the optional gain parameter. The module sets the default starting value to x[-1] = 0.

The discrete derivative is similar to the continuous time derivative. For example, if the input is a sine wave at 1 kHz, then the output will be a cosine at 1 kHz scaled by 2*pi*1000.

The hidden internal array .lastValue stores the previous value x[n-1] between blocks. The length of the array is set by the prebuild function to the number of subbands.

Type Definition

typedef struct _ModuleSbDerivative { ModuleInstanceDescriptor instance; // Common Audio Weaver module instance structure FLOAT32 gain; // Additional gain. FLOAT32* lastValue; // Previous value x[n-1]. } ModuleSbDerivativeClass;

Variables

Properties

Name

Type

Usage

isHidden

Default value

Range

Units

gain

float

parameter

0

1

-10:10

linear

lastValue

float*

state

1

[32 x 1]

Unrestricted

 

Pins

Input Pins

Name: in

Description: audio input

Data type: float

Channel range: Unrestricted

Block size range: Unrestricted

Sample rate range: Unrestricted

Complex support: Real

Output Pins

Name: out

Description: audio output

Data type: float

MATLAB Usage

File Name: sb_derivative_module.m

M=sb_derivative_module(NAME) Subband derivative module in which the derivative value of each subband is separately computed. The module only operates on real data and mathematically computes: y[n] = 1/dt * (x[n] - x[n-1]) where dt is the time step, dt = 1/SR. The module has a multichannel input and computes the derivative per channel. Arguments: NAME - name of the module.

Â