Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Scroll Documents: Update page title prefix

About This Application Note

The Hearing Enhancement Reusable Subsystem Application Note contains a brief description and tuning instructions for DSP Concepts’ Hearing Enhancement Reusable Subsystem.

Hearing Enhancement Reusable Subsystem

DSP Concepts’ proprietary Hearing Enhancement algorithm is available as a Reusable Subsystem in AWE Designer.

...

The Hearing Enhancement algorithm requires one outward-facing microphone input signal to capture ambient sounds, one inward-facing microphone input signal, and the speaker output feedback signal for monitoring howling. The Hearing Enhancement algorithm supports any sampling rate and any block size that is an integer factor of 256 samples. DSP Concepts recommends using an input signal with a block size of 1/3 millisecond or smaller, such as a 16-sample block size at a 48 kHz sampling rate, since larger block sizes result in a longer latency path from the outward-facing microphone to the earbud speaker which may make a user’s own voice feedback more distracting.

Example

Figure 2 shows an example layout demonstrating the Hearing Enhancement Reusable Subsystem. This example layout is designed to run on an NXP RT685 evaluation board flashed with DSP Concepts’ firmware for True Wireless Stereo applications; the outward-facing and inward-facing microphone signals must be assigned to appropriate channels for running the layout on a target device. There is a 50 Hz high-pass filter and a scaler gain in both the outward-facing and inward-facing microphone paths. The high-pass filters remove any DC offset, and the scalers adjust a nominal voice level (about 65 dBC measured at a 40 cm distance) to between -30 and -40 dBFS for nominal level voice.

...

Tuning

The Hearing Enhancement Reusable Subsystem includes an inspector which allows users to adjust the hearing boost level and turn on and off the howling control. Figure 3 shows the inspector panel of the Hearing Enhancement Reusable Subsystem. The inspector panel also allows users to tune the howling control’s analysis and adaptation times and displays the spectrum of the earbud speaker output signal and the howling behaviors.

Hearing Boost

The hearing boost knob is located at the top left corner of the control panel. The hearing boost ranges from 0 to 1, with 0 yielding no hearing boost and 1 yielding maximum hearing boost. DSP Concepts recommends starting with 0 and gradually increasing the strength to an appropriate level.

Image RemovedImage Added

Howling Control

The howling control switch allows users to turn on and off the howling control. DSP Concepts recommends turning it on by checking the howling control switch box. The switch is provided for users to hear the difference of the Hearing Enhancement algorithm with and without howling control enabled. If the outward-facing microphone signal is muted for a particular use case, e.g., while listening to streaming audio with active noise cancellation enabled, the howling control can be turned off.

...

While the primary howling tone is suppressed by the adaptive notch filter, the harmonics of the howling tone are suppressed by the multi-band limiters. The limiter threshold controls for a 2k-4kHz band and a 4k-8kHz band are provided in the control panel. If the harmonics in higher frequencies results in audible howling, users may set lower thresholds to suppress this howling. It is rare that the harmonics result in audible howling, so DSP Concepts recommends using the default values for the limiter thresholds.

Monitoring windows

Figure 4 shows an example of the control panel window during operation. The top right window shows the spectrums of the earbud speaker output. The two right bottom windows show the frequency response of the speaker-to-inward-facing-microphone transfer function and the inward-facing microphone frequency response. The frequency response of the transfer function indicates whether howling is occurring. In Figure 4, the transfer function response shows howling peaks around 4200 Hz in the left ear and around 3900 Hz in the right ear. The boxes below the frequency response windows show the adaptive notch filter gains and the detected howling frequencies.

...